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Optical link budget example

Sensitivity also specified in photons per bit:
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Noise

( ) ( )ph ph nI t iI t= +photocurrent

average photocurrent noise

2

2

( )

( )

avg n

n

t R

t R

p i

i=

=

Noise power dissipated into resistive load

noise power

2 2

0

1
( ) ( )

T

n ni i t
T

t dt=  (RMS squared value of the noise)

(bar denotes average)

( )phI t

t

phI

( )ph niI t+



4Fortuna – E3S Seminar

Shot noise

Most fundamental noise source. Sets sensitivity limit for conventional
optical receivers. Consequence of particle-like nature of photon.
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Poisson statistics

The probability of detecting N photons is governed by the Poisson distribution
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Shot noise power

2 2 ( ) 2s tshot phhoi Bi t qI== (amps2)

average value
of photocurrent

bandwidth of 
measurement

Shot noise power increases with higher average photocurrent.
This is a consequence of Poisson statistics. 

The observation time is reduced as the bandwidth increases. This 
increases the likelihood that the photocurrent measured within the 
observation time is different than the average photocurrent and thus
increases the noise power.

2shot phq Bi I=phI

Photodetector equivalent circuit
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Thermal noise 

All physical resistances have fluctuating voltage as a result of thermal motion
of charged carriers. 

The photodetector may have resistance which can contribute to thermal 
noise (series resistance or junction shunt resistance) but often the largest
contribution to thermal noise comes from the amplifier connected to the
photodetector.
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p-i-n photodiode noise
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Simplified equivalent circuit
of photoreceiver with p-i-n photodiode

Resistance includes junction resistance
and resistance of amplifier stage 
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Excess noise in APDs

Multiplication factor (M) is a random variable and can fluctuate about
some average value. The shot noise power for an APD can be written
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We desire k to be small for
small excess noise factor
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Comparing p-i-n and APD noise
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Direct detection
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photodetector amplifier
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Define average power as 

Photocurrent can be written as
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Direct detection
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= Direct detection receivers respond only to changes

in the intensity of the incident field.
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(assuming p-i-n photodiode)
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Coherent detection
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Photocurrent can be written as
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Coherent detection
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Coherent detection receivers respond 
to changes in frequency, phase, and intensity

This scheme where the IF is non-zero is known as heterodyne detection.
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Coherent vs. direct detection
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Coherent detection allows you to achieve shot-noise limit even if thermal noise
is large. You simply need to increase the local oscillator power (Plo).

In the limit of small thermal noise, heterodyne coherent detection increases
the SNR by a factor of two compared with direct direction.

Despite benefits, coherent detection is not always used due to increased
cost, power and complexity.


